

December 08, 2017

Design Studio 3 - A Doll’s World

Team C8
79209224 Vales, Darlene Cesicar

79369208 Nunez, Alicia
11671379 Li, Zhaomin

30882088 Espinosa, Sarah
17251265 Sattar, Suha

1

Table of Contents

Table of Contents 2
Introduction 3
Software Summary (Application) 3

Stakeholders 3
Goals 3
Assumptions 3
Constraints 4
Decisions 4

Application Design 5
Mind mapping 5
Persona 6
Mockup User Interface 8
Storyboards 10

Architecture Design 21
User Case Diagram 21

Actor Description: 22
Architectural Sequential Diagram 23
UML Diagram 24

Implementation Design 25
Class Description 25
Design Log 31
Design Methods 37

Final Report 39

2

Introduction
Our team is focused on designing the plan for “A Doll’s World” which is a project

intended on revamping the basic doll house into a virtual experience. The application is
a desktop-based game intended to ultimately promote the company’s current doll
collection. The dollhouse is intended to be collaborative so kids ages 4-7 can have fun
playing with their friends. Based off the specifications provided, we have made design
decisions to implement application, interaction, architectural, and implementation
design. The logic behind our design decisions is detailed within our design.

Software Summary (Application)

Stakeholders
● Children
● Parents
● Toy Company
● Developers
● UI/UX Designers
● Tech Support

Goals
● Kids from multiple locations can play together on the application.

○ Can meet other dolls
○ Can visit other doll houses
○ Can add friends, have a list of friends.

● The game is intuitive -- simple and easy to use
● The game is fun and engaging for the kids to play.

○ Have levels that they can unlock, giving them incentives to play.
● The game can be easily maintained and accommodate changes for the future.

Assumptions
● Kids have decent knowledge and experience on how to use a computer.
● Computers will meet minimum requirements to run the game.
● Servers will be able to handle online traffic.
● This is a desktop game.
● The company makes gender-neutral dolls. User chooses the skin color, eyes,

and hair.

3

● There is a default body type for all the dolls. We think kids would enjoy changing
the outfit for the dolls more, rather than changing the height and body type. And it
helps the company to make the dolls in the same size.

Constraints
● Target age range is kids 4-7 years old.
● Username duplicates are not allowed. Kids will be able to name their dolls

separately.
● Some features will only be accessible with internet access.
● You must download the game online in order to play. There will be no

web-version of the game.
● For security purposes, there will be limited online chat features.
● No in-app purchases.
● Kids can only have one dollhouse, chosen from predefined dollhouse templates.

They will have the option to choose the placement of the rooms

Decisions
● User must have internet connection when they first download and create their

username.
○ An online database will be checked to make sure the username is unique.

● Have a set of established furniture
● Doll actions are determined by furniture. Different types of rooms have different

types of furnitures and various interactions with the furnitures. Dolls cannot do
anything in an empty room.

● Minimum of one room, one kitchen, one bathroom, and one garage for each
house.

● The system sets the number of rooms in a house and the arrangement of the
rooms. There are four empty rooms and the kids can choose the types of the
rooms.This decision eliminates the mis-arrangement of the house (in shape or in
functionality), and eases the kids’ work.

● There is level system for each user.
○ The users have daily a task to complete, so they can level-up. It motivates

the kids to play games on a daily basis.
○ By leveling up, users can unlock new furniture in the game.

● Limited chat services. Users cannot message each other.
○ Dolls have ‘chat bubbles’ with a preset list of sayings to say to one another

4

○ Chat services can be considered unsafe, especially for age group we are
designing for. By using chat bubbles instead of messaging, we prevent
any type of inappropriate behavior on the game.

Application Design

Mind mapping

We performed the mind mapping on the first day that we met up. In this practice,

we start from the Doll House Software, which is the essence of our project. We wanted
to analyze it from four aspect: application design, interaction design, architecture
design, and implementation design. As we have more and more nodes in the map, we
also concern some of other features such as the physical features of the dollhouse, the
collaboration among users, and the company’s business.

5

Interaction Design
Persona

6

We have four personas, one for a 7-year-old boy, one for a 6-year-old girl, one for a
6-year-old girl, and one for a 5-year-old boy’s father. They have different characteristics.
The persona can show how different types of users interact with our doll’s World game.

7

Mockup User Interface

This is the interface for
viewing the whole dollHouse.
This is the first interface for
users after they log in. It
show the arrangement of the
rooms and the right sidebar
contains the information or
functions the users want to
access. Users are able to
click the room to zoom in.
The operation leads to the
room interface

This is the interface for an
individual room. This mockup
in particular is empty, but
typically, a room will have
furniture in it that go in set
places. Users are able to
zoom out with the top left
button to see the whole
dollhouse. With the top right
button, they can be
transferred to an interface
that lets them customize the
room that they are in. When
Furniture is inside a room,
users can click on a piece of
furniture and be presented
with a list of actions that their
dolls can do with it.

8

This is the interface for the
users to decorate their dolls.
It can be accessed by
clicking the “My Dolls” on the
sidebar. In this interface, the
users can change the outfits
of the by selecting a type of
clothing from the left side
bar. From the bottom bar,
they can then choose an
item of clothing. When an
item of clothing is clicked on,
it will appear on the doll. A
user can reset their doll to its
default outfit with the “Reset”
button or finish and save
their doll with the “Finished”
button. They will the. Be
taken back to the dollhouse
interface.

This is the interface for the
users to decorate their dolls.
It can be accessed by
clicking the “Edit Room” on
the up right side of the room
interface. In this interface,
the users can drag or
remove the unlocked
furnitures in the certain
room. There is a grid
(coordinations) inside the
room, which is invisible to
the user. But the allocation of
the furniture relates to the
coordinates and not two
furnitures can overlap with
each other.

9

Storyboards

10

11

12

13

14

15

16

17

18

19

20

Architecture Design

User Case Diagram

21

Actor Description:
Kid: The main players of the dollhouse. They can enjoy the most functionalities of the
game. Various user cases relating to kids can help them gain the great gaming
experience.

Parent: Their main job is to supervise the kids while the kids are playing the game, or to
confirm while the kids start to play the game. When the kids sign up the accounts, the
parents need to authorize the sign-up request.

Server: Server is able to handle the communication and collaboration between different
players on the same dollhouse project. It supports the collaborative functionalities,
guaranteeing the connection between users on the same project.

22

Architectural Sequential Diagram

23

UML Diagram

24

Implementation Design

Class Description

● User : ​The main players of the doll’s world. Most of the users are kids. Each user
can create the doll houses and control the decoration of the house. The user
keep a list of friends so that the user can visit the friends’ dollhouses. Each user
can create doll(s) in the dollhouse. Each user has a level which can help him/her
unlock the clothing and the furnitures. Each user has a task system. Completing
the task can offer the user experience for leveling up.

○ Attributes:
■ Type : string in {‘kid’, ‘guardian’} → indicating the condition of users,

mostly kids, and parents can be the supervisors.
■ userName : string → the account name of the user, unique for one

user
■ passWord : string → the passcode for logging in
■ friends : User[] → list of friends
■ projects : dollHouse → the dollhouse that is created and owned by

the user
■ levelSystem : level → corresponding level for the user
■ Tasks : TaskSystem → record all the tasks for the user

○ Methods:
■ chat(string sentence or emoji) → start a chatBubble when they are

visiting others’ houses
■ createDoll(pair<string, string> hair, string eyeColor, string

skinTone) → It creates Doll in the corresponding dollhouse. The
doll’s user attribute is setted by the user.

● Level: ​The level is assigned to each user. While playing the dollHouse, user can
increase the level by completing the task and gain the experience. Some clothing
and furnitures require a certain level to be unlocked. Whenever the user reaches
the needed experience, the level increase by one and the needed experience for
next level is increased by 50%.

○ Attribute:
■ currentLevel : Int → the current level of the user
■ needExperience : Int → the need experience to level up
■ currentExperience : Int → the current experience of the user

25

○ Methods:
■ Void levelUp(): the user levels up after reaching the

needExperience. Everytime the needExperience is updated by
multiplying 1.5

● Dollhouse : ​A collection of rooms. User can create a dollhouse and modify it.
The dollhouse relates to the dollWorld. For the collaborative functionality, the
user can visit other players’ dollhouses by accessing the friend dollhouses list in
the DollWorld. DollHouse has the garage, which is for visiting other’s houses.

○ Attributes:
■ rooms : Room[6] → list of rooms in the house. The house would

have 6 rooms in total (4 empty, 1 bathroom, 1 kitchen).
■ dolls : Doll[] → list of dolls in the house
■ garage: Garage → a garage is how a user will connect to other

users. In dollhouse, it has a garage for the interfacing purpose. And
user connects to one garage so the user can send request to enter
other people’s houses.

■ roofColor : string → the roof color, map to the global color reference
■ houseColor : string → the house wall color, map to the global color

reference
■ floor : int → record the number of floors for a house
■ HouseID : int → a unique ID for the dollHouse so that user can

request to go to the house with the specific ID.
○ Methods:

■ changeRoomType(Room) : written in the decisions, the house can
have four empty rooms and user can assign the type to the empty
rooms

● Doll : ​User can create doll(s) in the dollhouse. Each doll can interact with the
furnitures and move in/between rooms following the user’s orders. A doll has a
closet containing all the clothing. And doll has different body parts for different
clothing.

○ Attributes:
■ Name : string → user can make a nickname for the doll
■ Outfit : map(string bodyPart, Clothing clothing) → each doll is

supposed to have a list of clothing mapping to each part of body.
The clothing are also in the Closet.

■ Closet : Closet → all the clothing owned by the doll
■ characterID : Int → a number (or set of numbers) that represents a

doll’s ID

26

■ Hair : pair(string, string) → the first string is color (red, yellow...),
and the second string is style (short, curly...)

■ eyeColor : string → the eye color of the doll, map to the global color
reference

■ skinTone : string → the skin tone of the doll, map to the global color
reference

■ Owner : User → the user who owns this doll
○ Methods:

■ changeOutfit(Clothing clothes) : search the clothing in the closet,
and replace the clothing for corresponding body parts.

■ defaultOutfit() : generate the default top and the default pants, may
be white vest and shorts.

● ChatBubble :​ Each person has a chat bubble, used to show when user want to
talk with friends. It is normally used when the user is in the friends’ houses, they
can talk with friends and send emojis. That functionality follows the idea of
collaboration. And, considering, the age of the players, the chatBubble can only
send predefined text or emojis, but not a long sentence. When a user is in other’s
house by accessing the dollWorld, the user can use the chat bubbles by sending
the server a request. The server would deliver the message the friends.

○ Attribute:
■ Active : Bool→ kid can activates or inactivate the chat function
■ Sentence : string → simple greeting. Long sentences are not

allowed
■ Emoji : picture → or string which records the source of picture
■ deliver : User → the user who delivers the message

receiver : User[] → all the co-workers who receive the
message

○ Methods
■ send(User deliver, User receiver[]) : user send a request to server

to let the server pass the information to the receiver(s).
■ changeChatStatus: active = !active → chatBubble is not allowed

when the status is inactive.
● Room : ​Room is the place to allocate all the furnitures and to make interactions

between the dolls and the furnitures. Room remains a map the between the
furniture and the corresponding actions. The types of furniture can differ, based
on the type of the room (bath, bed..). To locate the furniture, the room has a
coordinating grid in it (on floor/on wall). Furniture can be place on a empty grid or
replace the former furnitures.

○ Attributes:

27

■ roomType : int → an ID representing the type of room.
■ furnitureLocations : Arraylist<Arraylist<Furniture>> → a 2-D array

representing the coordinates in a room, each furniture is located on
one specific coordinates and if two furnitures’ coordinates are
overlapped, the old one would be replaced

■ furnitureAction : map(furniture(or string), action(or string)) → when
a user clicks a furniture in a specific room, the system finds the
corresponding action to the specific furniture, and then plays the
animations.

■ currentDolls : Doll[] → list of the dolls that are currently in the room
○ Methods:

■ enterRoom(Doll) - Doll enters the room. The doll is added into the
list of currentDoll.

■ leaveRoom(Doll) - Doll leaves the room. The doll is removed from
the list of currentDoll.

■ saveRoom() - saves the state of the room, storing the
furnitureLocation in the memory.

■ resetRoom() - Resets the room so it is empty, cleaning up the
furnitureLocation.

■ addFurniture(pair<int,int> coordinates, Furniture addedFurniture) -
Adds furniture into the room based on the coordinators. The
furniture is add on to the certain location in the room and replace
the former furnitures if they are overlapped.

■ deleteFurniture(Furniture deletedFurniture) - Deletes the furniture,
remove from the furnitureLocation

■
● Closet : ​Collection of clothing that a user has unlocked and belongs to a single

doll.
○ Attributes:

■ outfitMap : map(string bodyPart, Clothing clothing) → map the
body part with the clothing

○ Methods:
■ addOutfit(Clothing newClothes) : add clothing into the map
■ removeOutfit(Clothing oldClothes) : remove the clothing key from

the map.
■

● Clothing :​ The clothing which can be worn by the dolls. Each clothing has a type
for a certain body part. There is a lock for the level system.

○ Attributes:

28

■ Name : string → the name the clothing
■ isUnlocked: bool → determines if the clothing is locked. It would

unlock if the user reach a certain level.
■ bodyPart : string (including top, pant, head, hand, foot, bag) → it

show the which bodyPart the clothing belongs to. When picturing
the doll, each clothing should go to the right body part.

○ Methods:
■ switchLock(): unlocks or lock the clothing item, isUnlocked !=

isUnlocked
● Furniture : ​Furniture has a roomType, indicating in which room the furniture can

be placed. There is a lock imposed by the level system. The coordinators is used
to match the grid in each room. Each furniture has a specific interaction and
relates to the task system.

○ Attributes:
■ Name : string → the name of the clothing
■ Coordinates : pair<int, int> → pair of integers representing the

coordinates of where the furniture is located in the room.
■ roomType: string → can be {livingroom, kitchen, bathroom,

diningroom, bedroom, garage, garden…...}, the room type shows in
which room the furniture should be placed

■ isUnlocked : Bool → determines if the furniture is locked. It would
unlock if the user reach a certain level.

■ action : Action[] → the corresponding actions to the furniture. User
use the certain Action class to interact with the furniture.

○ Methods:
■ switchLock(): unlocks or lock the clothing item, isUnlocked !=

isUnlocked
● dollWorld :​ The class maintains the list of the dollhouses that the user can visit.

It contains at least one house which is the user’s dollHouse. When garage sends
a request, the software search the friends’ list of dollHouses to find the
destination so that the user can go to other’s dollhouse.

○ Attributes:
■ users : User → player who owns the doll house. The dollWorld

object can relate this user to all his/her friends’ houses.
■ Houses : house[] → the houses that the user can visit, must check

the friend list stored inside the User class.
○ Methods:

■ startUp(User users[]): set the default house and the initial users.
■ cleanUp(): clean up the whole house in Project object.

29

● Action​ : User can perform certain action on certain furniture. Action can be
taking shower in the tub, sitting on the sofa, or watching the television. The action
is presented as a shot anime for the doll-furniture interaction. Anime is stored in
the system and can be imported (matched up) by using a string-type address.

○ Attribute:
■ Name : string → the name of the action
■ Animation : string → the string indicating the address of the action

animation stored in the system back-storage
○ Method:

act(string animation) : perform the anime, showing the interaction
between the dolls and the furnitures.

● TaskSystem : ​The task system that the user can play on daily basis. The is a
task list, and each task is a node. After user completing the action, the task tried
to match if it’s reaction may be expected.

○ Attribute:
■ currentTasks : List< string name, Action requireAct, int expOffer>

→ the task name and the related Action and the experience offered
to the users

■ user : User → certain user complete the task.
○ Method:

Void AssignTo(User) : assign the experience to the users. It would
change the currentExperience in the levelSystem to the
corresponding user, and may trigger the levelUp method.

■ listTask() : presenting all the tasks to the user
■ checkTask(Action) : if a certain action is completed, check if the

action is a task. Perform every time when a new action is
completed.

■ removeTask(Action) : If a user have done a action which is a task,
remove that certain task from the currentTasks list.

● DollUniverse ​: The class of collection. Collecting the map containing all the
users and corresponding dollWorld. The map is continuously updated as the
number of the user (#of the dollhouse) increases.

○ Attribute​:
■ worldCollection : map< user, dollworld> → a map that relating the

users with the doolwords
○ Methods:

■ add dollworld(DollWorld) : adding the New dollhouse into the doll
universe.

■ removeDollWorld(DollWorld)

30

● Garage: ​The class that enables users to visit their friend’s dollHouse. The
driveCar method actually sends the users to the friend’s house they request. The
request will go to this user’s dollWorld and find the requested friend’s house in
the house list. In another word, Garage class is like a portal for the users to
access others’ houses (we animate the visit-friend-dollHouse process as the user
drives a car to the friend’s house). This class is important in the collaborative
design.

○ Attribute:
■ users: User[] → list of friends
■ house: House → current dollHouse that the user is in, showing the

dollhouse that the garage is attached to
■ D

○ Methods:
■ driveCar(houseId): brings the user to their friend’s dollHouse
■ goHome(houseId): brings the user back to their own dollHouse

Design Log

November 17, 2017

● The First Meeting
● Group is assembled; everyone is present
● We created a mind map (pictured below), containing all of our ideas for the

dollhouse, planning out possible classes and looking at different requirements
necessary for the dollhouse.

● Created a brainstorming document containing ideas that we have.
● Created a notes document, containing requirements specified from the

assignment, which we will later add on to for any more requirements specified
through email or in class.

31

November 28, 2017

● First meeting outside of class
● Figured out most of the class in the UML design
● Figure out some interesting features including the level system
● Add goals, decisions, ideas, assumptions

32

First UML draft - it doesn’t have the task system and the level system embedded

33

November 30, 2017

● Second meeting outside of class
● Add goals, decisions, ideas, assumptions
● Review the UI designs
● Design the specific methods of each class
● Design the user interaction with the dollhouse and how to implement them in

system

34

December 5, 2017

● Today’s meeting
● We decide all the contents that we will present in the final Design Studio 3
● Do the persona
● Deep into the class description

●

35

●
● Second UML diagram draft - can not apply the functionality that user can go to

friends house

● First architectural sequence diagram draft

36

Design Methods
Application Design:

● Feature Comparison​ - We looked up different online dollhouse games to see
what our “competitors” were doing. We saw that a lot of the games were almost
the same: They allowed users to pick furniture items from a set of items (varying
by colors) and the furniture would be placed in specific place. Many of the games
did not have a doll, or allow the user to create a doll, it was mainly interior design.
However, we liked many of the ideas we saw online and were influenced by them
when deciding the features on our game.

● Mind Mapping​ - The very first thing we did as a group was create a mind map.
The mind map allowed us to focus on the heart of the game (the dollhouse) and
then delve into subcategories that the dollhouse would need (rooms, the doll,
furniture). Once we had our subcategories, we needed to decide what we would
allow the user to do with these subcategories. Could the user decide what color
furniture they wanted? Yes, they could choose from a list of different items that
were different colors. Could the user decide where to put their furniture? No,
furniture location is already pre-established. Mind mapping allowed us to come to
decisions like these.

● Role Playing​ - We took part in quite a bit of role playing when we began to
evaluate whether the actions we’ve decided to allow for the user was something

37

they would want. Initially, we were only going to allow the user to create female
dolls, but after doing roleplaying, we realized that the user may want to play a
male doll. This led to us allowing the user to create a doll, starting with a
gender-neutral template.

Interaction Design:​ For our interaction design, we ended up using three different
design methods. We choose these methods because they allowed us to delve into what
we believe the user will do/think when interacting with the user interface.

● Personas​ - We made personas for different users: a five-year-old named Hanna,
a seven-year-old named Brandon, a thirty-year-old parent named Isaac, and a
six-year-old named Lacy. By creating personas, we were able to think of what
type of user would be using the dollhouse game. Brandon, Hanna, and Lacy are
younger aged kids who love creating things and playing with dolls. By taking this
into account, we knew that we had to design an interface that is easy for children
to use, and create a game that peaks their interests (allowing them to create and
design their rooms and allowing them to create dolls that can interact with other
dolls). Additionally, Isaac is a typical parent who wants to ensure that their kids
are playing a fun and safe game. By taking this into account, we knew we had to
design an interface that requires parent authorization and have limited online
chat features.

● Storyboarding​ - Creating a storyboard allowed us to have an idea of how a user
would interact with the system. We drew what we believed the user should do
when using our game. For example, when they start creating their doll, we plan
that they will click a category (shirt), and then they will select an option from that
category (blue shirt, red shirt, pink shirt). Storyboarding helped us see if we were
missing any implementation or design logic of the game.

● Think-aloud protocol​ - While we did not have children to partake in our
think-aloud protocol, we did decide to do it ourselves. By talking out loud, we
were able to hear the user’s thought process and what they would consider doing
as the next step. Doing this also allowed us to realize any flaws in our system.
For example, when we were having our doll do actions, we were unsure if the
doll will do these actions by clicking on the doll and then choose an action, or if
we will click a piece of furniture and then choose an action based off of the
furniture. By thinking-aloud we were able to make decisions on things we had not
thought about previously.

Architecture Design:

● Model-driven engineering​ - In order to keep track of the game’s architecture, we
decided to make a UML diagram. With a complex game like A Doll’s World, it is

38

easy to miss key information or design logic. By having the UML diagram, we
were able to see the whole picture of the game and see if we were missing
anything. We were able to focus on the different domains of the game and see
how they are related with each other.

● Decomposition​ - After we determined the subcategories of the game during our
mind mapping exercise, we were able to break down the assignment into
smaller, doable tasks. As a result, we were able to address each task during our
meetings and make a decision as a group. This increased our work productivity a
lot, since we knew exactly what to work on next after we finished a task. We were
also able to work on the assignment remotely, since each person was assigned a
task to be finished.

● Architectural style​ - In order to implement the collaboration aspect of the game,
we decided to have a dollUniverse that contains all the dollHouses of the users
who play the game. Each user will have their own dollWorld, where they can visit
the dollHouse of their friends. This functionality of the game will only be available
with internet connection, since the online server must display each doll’s action in
real-time.

Implementation Design:

● Summarization​ - After the application, interaction, and architecture design, we
were able to summarize our progress and see what else needs to be worked on.
This is the part of the assignment where we looked closely at our design to see if
there are any design flaws and missing class/attribute/method.

● Visualization​ - Having the storyboard helped us visualize how we want the GUI to
look like, and how users might interact with the game.This helped us see if we
were missing any important functionalities that the user might need.

● Inspections/Reviews​ - After all the deliverables for Design Studio 3 have been
integrated into one document, each team member reviewed it to ensure that
everything is complete and satisfies the team’s standards. This guarantees that
everyone in the team is happy with the final product of our assignment.

Final Report
Design Decisions We’ve Made

- For our implementation we chose to go with a version of the doll house in which users
should pick rooms from template and while a minimum is in place for number of rooms
the maximum is preset. The reasoning behind this decision is based off of real-life doll
house’s that come pre-made and you can't add and remove rooms.

39

- For our overall game scope we chose to take a top-down approach where there is a
system-level universe which houses a collection of doll-worlds’. Each world is a
personalized view of the all the doll house’s based off user’s and who their friends are.
The doll world’s consist of individual doll houses that are associated to users. Each user
has ownership of their own dollhouse as well as dolls for the dollhouse.

- In order to afford more universal usability, taking into consideration who our target
audience is, we decided to forgo any sort of login to access the game. The game must
be downloaded onto to the desktop upon which initial user setup will occur. Users must
create a unique username which will be the unique identification for the user account.
This eliminates the need for young children to have to remember a login and password
every time they want to play the game. Also, since the game must be downloaded in
order to be played it is redundant to also have login.

- Another design decision we made was that every doll house comes equipped with its
own car and it is the means for dolls to get to their friends houses. The car’s aren't
customizable because we felt that was outside of the scope of this application, but we
choose doll’s to have cars because it is a realistic method of getting to other friends
houses.

- We allowed users to have multiple dolls, but not multiple dollhouses modeling the
real-world doll-house. We chose this in order to limit the scope of the application and
simplify design decisions in regards to displaying the doll’s worlds.

- For security purposes, we decided to limit the online chat features of the game. There
will be predefined text and emojis that the user can choose from to communicate instead
of a chat box. Since there is no way to verify that the user is within the target range of
4-7 years old, we want to limit the chances of a kid interacting with a pedophile.

- For our interaction design, we wanted to keep things simple, since the targeted audience
ranges from 4 - 7 year olds. We decided that moving a doll through the dollhouse would
be limited to clicking on the doll and clicking on the desired rooms. Virtually, dolls will
remain in one spot of the room. When a user wants to move them to a room, they simply
click their doll and then click the desired room. This is the same with interacting with
furniture or household items. In a room, a user simply has to click a piece of furniture
and choose an action from a pop up list. They will then see the animation of the action.

40

